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Abstract. This paper focused on a new application of the TOPSIS method for the prediction
and optimization of the oligonucleotides characteristics. This method has been used for these
purposes as it has shown its efficacy for these analvses. This is the first time that it has been applied
to the investigation of these biomolecules. The hypothesis in this paper was that the characteristics
of these biomaterials would be optimized according to their structural differences. The obtained
results showed that the stabilization of oligonucleotides would affect their ranking with TOPSIS
when the stability of these biomolecules increased against enzymes in their structure. In other words,
the oligonucleotides with less enzvmatic degradation were ranked better with this method. This
study showed the first application of this algorithm for the prediction and optimization of the
oligonucleotides” characteristics. The results in this work revealed that the ranks of candidates
depended on their distances from their ideal solutions. This showed that TOPSIS could be used as an
appropriate method in the optimization of oligonucleotides as the rankings with this method would
coincide with the data that concern the stabilitv of these biomolecules against enzymatic
degradation. The results of this work could be applied for the preparation of novel materials with
applications in science and engineering,.
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Introduction

Antisense oligonucleotides are the biomolecules that hvbridize to target sequences of messenger
ribonucleic acid (RNA), resulting in the block of its translation into proteins [1-4]. During recent vears,
oligodeoxynucleotides (ODN) have been developed to target diseases caused by the undesired proteins
generated from messenger RNA (mRNA). Hybridization of an ODN to mRNA can block gene expression
by activating an enzyme, RNase H, which degrades the target site of mRNA [5-8].

Multidrug resistance (MDR) is a major problem in cancer therapeutics, which concerns the
resistance of cancer cells to anti-cancer drugs [9-11]. The overexpression of the mdrl gene is a form of
MDR. This gene encodes the transmembrane permeability glvcoprotein (P-gp), which acts as a nonspecific
efflux pump [12-15].

Previously, we investigated the antisense efficiency of several ODNs directed against mdrl-
expressing cells. It was revealed that the minimal modifications of these biomolecules having a
minimum of phosphorothioate linkages could protect them against serum and cellular exonucleases
and endonucleases [16, 17].

Several motivations have initiated the current research work. First, it was interesting to perform the
optimization and analysis of ODNs with the Technique for Order of Preference by Similarity to Ideal
Solution (TOPSIS), a decision-making algorithm that would predict and determine the candidates’ ranks
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according to their distances from the best and wors alternatives. Secondly, the optimization and analysis of
ODNs with TOPSIS to determine the impact of their stability againt enzyvmatic degradation on their
ranking have not been explored, vet. Finally, it was interesting to get the ranks of ODNs in order to
compare their stability against enzymatic degradation in different cell lines.

To make the ODNs become effective biomolecules in order to attach to mRNA in cells, it would be
necessary to deliver them to cells. Different tvpes of delivery svstems can be used for the internalization of
ODNs to cells. In our previous work, we used cholesterol conjugated at the 5 -end of the ODN, a
commercial transfectant (Superfect), or an amphotericin B derivative (AMA) for delivering the ODNs to
the NIH-MDR-G185 cells [17].

The unmodified phosphodiester ODNs are rapidly degraded by serum or intracellular nucleases
[18-21]. These biomolecules can be structurally modified to phosphorothioate ODNs in which nonbridging
oxygen of the phosphodiester bond 1is replaced with sulfur. This can enhance their stability against
enzymatic degradation [16, 17]. However, the nonspecific binding of phosphorothioate ODNs to proteins
causes their nonantisense effect [22]. At high concentrations, these modified ODNs can inhibit the RNase
H activity [23]. Therefore, we investigated the minimally modified phosphodiesters with minimal
phosphorothioate sequences [16, 17]. Second-generation antisense ODNs, have the desirable properties of
PS oligonucleotides, which is the resistance to nucleases and RNase H activation.

TOPSIS has been used previously for the optimization of materials [24-27]. To the author’s
knowledge, no investigation on the characteristic optimization of the antisense oligonucleotides against the
mdrl with this algorithm has been performed, vet. The optimization and analysis of these biomolecules
with TOPSIS is a novel application of this decision-making method.

The aim of this paper was to investigate the optimization and analysis of oligonucleotides with TOPSIS.
For this, two different series of analvses were performed on two groups of ODNs. To the author’s knowledge,
this is the first comparative investigation of these biomolecules with TOPSIS. The results of the current paper
can be used for the improvement of the use of these biomaterials in science and engineering.

Experimental approach

The antisense oligonucleotides investigated in this study were chosen from our previous studies for
their effects against the mdrl gene. The ODNs in the current work were chosen according to their stability
against enzymatic degradation revealed in our previous publications [16, 17].

In our previous work, the ODNs were delivered to the NIH-MDR-G185 cells by one of these
delivery agents in our previous study: a cholesterol conjugated at the 5°-end of the ODN, a commercial
transfectant (Superfect), or an amphotericin B derivative (AMA) [17].

Table 1 shows the list of the antisense oligonucleotides studied in the current paper with TOPSIS.
All the partially or completely phosphorothioates were indicated with the stars at their nucleic bases for
indicating the presence of sulfur in place of nonbridging oxvgen in their bonds. The phosphodiester
oligonucleotide, ODN-H, with no indicating star, did not have this modification in any of its bonds.

In the first series of analysis, the ODNs in Table 1, ODN-H, ODN-HI and ODN-H2, investigated
in our previous work [16], were indicated as the first, second and third candidates, or C,, C; and Cs, in the
matrices of TOPSIS, respectively.

Table 1

The list of the antisense oligonucleotides

Oligonucleotide Sequence
ODN-H 5'-GATCCATCCCGACCTCGCGAAGC-3'
ODN-H1 5"-GAT*C*C*AT*CCCG*ACCTCGCGAAGC-3’
ODN-H2 5"-GATC*C*A*TC*CCG*ACCTCGCGAAGC-3’
AS-ODN 5-CXCAXT*C*CHCHGFAXCHCHFTHCHGFCHG*CHFTCHC-3'
ODNI1 5-G*A*TCCATCCCGACCTCGCGAAGC-3'
S-ODN (control ODN) S-CHCHT*CHGFCHGHCHFTHCHCHARGHCHCHCHTHA*CHC-3'
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The results that we obtained in that work in K362 cell lysate showed that ODN-H was completely
degraded after 24 hours incubation and its t;;; was 1 hour 45 minutes. There was still 1 % ODN-H1 after
this duration of incubation and its half-life (t,,2) was 4 hours. 20 % ODN-H2 was intact after the incubation
and its t,» was about 10 hours. In other words, 100 % ODN-H, 99 % ODN-HI, and 80 % ODN-H2 were
degraded after this duration of incubation, respectively.

In the second series of analysis, the ODNs in Table 1, AS-ODN, ODNI, and control ODN
investigated in our previous work [17] were indicated as the first, second, and third candidates, or C;, C,
and C;, in the matrices of TOPSIS, respectively. The three steps previously performed in our published
paper with cholesterol conjugated ODNs, which were the samples that had a cholesterol conjugated at their
57 end, the ones delivered to cells with superfecta and the other ones delivered to cells with AMA [17],
were considered in the matrices of TOPSIS. The efficiency of ODNs to block the P-gp expression was
considered as a profit criterion in TOPSIS. In the investigation of the delivery of ODNs with cholesterol to
cells, the remaining P-gp expressions with the internalization of AS-ODN, ODNI1 and control ODN were
2 %, 6 % and 100 %, respectively. In other words, the efficiency of these ODNs to block this protein
expression were 98 %, 94 % and 0 %, respectively. After their delivery with Superfect, the remaining P-gp
expressions with the internalization of AS-ODN, ODNI and control ODN were 15 %, 100 % and 100 %,
respectively. Therefore, the efficiency of these ODNss to block this protein expression were 85 %, 0 % and
0 %, respectively. After their delivery with AMA, the remaining P-gp expressions with the internalization
of AS-ODN, ODNI, and control ODN were 20 %, 40 % and 100 %, respectively. So, the efficiency of
these ODNSs to eliminate to block this protein expression was 80 %, 60 % and 0 %, respectively.

TOPSIS method

The TOPSIS algorithm with a code in Python presented on the GitHub website
(https://github.com/Glitchfix/TOPSIS-Python/blob/master/topsis.py) was used for the analysis and
optimization of ODNs with the same method described previously [24, 25, 26, 27].

Higher half-life values and lower percentage values of enzymatic degradation show more efficiency
of ODNs to remain intact in cell lysate. Therefore, t)» and enzymatic degradation in K562 cell lysate for
these ODNs were considered as the profit criterion and cost criterion in the TOPSIS method, respectively.
The half-life values of ODN-H, ODN-HI and ODN-H2 were divided by 10. Therefore, the membership
degree values of ODN-H, ODN-H1 and ODN-H2 calculated from their half-life values were 0.18, 0.40 and
1.00, respectively. The degradation percentages of ODNs were divided by 100 to result the membership
degrees of these candidates to be used in TOPSIS. Therefore, the membership degree values of ODN-H,
ODN-H1 and ODN-H2 calculated from their degradation percentages were 1.00, 0.99 and 0.80,
respectively. These membership degree values were indicated in the values matrix in TOPIS.

The efficiencies of the ODNs to eliminate to block P-gp expression were divided by 100 to result
their membership degrees in TOPSIS. Therefore, the membership degree values of AS-ODN, ODNI and
control ODN calculated from their efficiency to block the P-gp expression after their delivery with
cholesterol were 0.98, 0.94 and 0.00, respectively; after their delivery with Superfect were 0.85, 0.00 and
0.00, respectively and after their delivery with AMA were 0.80, 0.60 and 0.00, respectively. These
membership degree values were indicated in the values matrix in TOPIS.

Results and discussion

Table 2 shows the membership degree values of ODN-H, ODN-H1 and ODN-H2 as the first, second
and third candidates, or C,, C; and C;, respectively.

Table 2
The membership degree values of ODN-H, ODN-H1 and ODN-H2

R o Enzymatic degradation in K562 cell
lysate
C 0.18 1.00
C, 0.40 0.99
C; 1.00 0.8
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Tables 3 and 4 show the weight values applied for each criterion of ODN-H, ODN-H1 and ODN-H2
and the criteria matrix, respectively.

Table 3
Weight values applied for each criterion of ODN-H, ODN-H1 and ODN-H2
G Enzymatic degradation
Alternatives/Values tin in K562 cell lysste
C-G; 0.5 0.5
Table 4
Criteria matrix for ODN-H, ODN-H1 and ODN-H2
Alternatives/Values ti Enzymatic degradation in K562 cell lysate
C-C5 true false

Table 5 shows the distances from the best alternative and the worst altemnative, the similarity
coefficients as well as the ranking of ODN-H, ODN-H1 and ODN-H2.

Table 5
The distances from the best and worst alternatives, the similarity coefficients
and ranking of ODN-H, ODN-H1 and ODN-H2
Candidates d; d; CG; Ranking
G 0.38051653 0.00000000 0.00000000 3
G 0.28093158 0.10078265 0.26402645 2
G 0.00000000 0.38051653 1.00000000 1

ODN-H2 with the highest stability against enzymatic degradation had the first position in the

ranking with TOPSIS. ODN-HI and ODN-H with less stability and the worst stability had the second and
third ranking positions, respectively.

Table 6 shows the membership degree values of AS-ODN, ODNI and control ODN as the first,
second and third candidates, or C,, C; and C;, respectively.

Table 6
The membership degree values of AS-ODN, ODN1 and control ODN
Candidates/Criteria Delivery of cholesterol ODNs e R Delivery with AMA
Superfect
G 0.98 0.85 0.80
G 0.94 0.00 0.60
G 0.00 0.00 0.00

Tables 7 and 8 show the weight values applied for each criterion of AS-ODN, ODNI1 and control
ODN and the criteria matrix, respectively.
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Table 7
Weight values applied for each criterion of AS-ODN, ODN1 and control ODN

Alternatives/Values Dehvety(;)];c;];olesterol Delivery with Superfect Delivery with AMA
C-C; 0.5 0.5 0.5

Table 8
Criteria matrix for AS-ODN, ODNI1 and control ODN

Alternatives/Values Dehvety(;)]g;l;olesterol Delivery with Superfect Delivery with AMA
C-Cs true true true

Table 9 shows the distances from the best alternative and the worst alternative, the similarity
coefficients as well as the ranking of AS-ODN, ODN1 and control ODN.

Table 9
The distances from the best and worst alternatives,
the similarity coefficients and ranking of AS-ODN, ODN1 and control ODN
Candidates d; d’ CC; Ranking
C 0.00000000 0.48999142 1.00000000 1
G, 0.34007641 0.30535511 0.47310226 2
(0N 0.48999142 0.00000000 0.00000000 3

AS-ODN with the highest half-time value and the lowest nuclease degradation was ranked in the
first position by TOPSIS. ODNI1 and control ODN with less half-time values and the lower nuclease
degradation had the second and third-ranking positions, respectively. As ODN1 was more stable against the
cell lysate nucleases than control ODN, this first one was ranked in the second position, whereas this last
one had the last ranking position.

The results obtained in the current work showed that TOPSIS has been an appropriate method in
the optimization of ODNSs as the rankings with this method have coincided with the data concerning the
stability of these biomolecules against enzymatic degradation.

Several biomolecules and nanomaterials have been assembled with ODNs, previously [28-32].
However, they have not been investigated and optimized according to their characteristics with TOPSIS.
During recent years, the physicochemical [33-37], rheological [38-41], and biological [42-45] properties
of many biomolecules and nanomaterials have been studied. The characteristics of these materials are
related to their preparation procedures [46-50]. Some materials and processes have been optimized
with TOPSIS [51-53]. However, no comparative analysis has been done on their optimization, yet.
This method has found diverse applications in different fields of science [54-537]. It has also been
applied in combination with other analysis methods [58-62]. More investigations would be required to
determine how the optimization of ODNS would be affected when ODNs were assembled with these
biomolecules and nanomaterials.

Conclusions

The current paper aimed to investigate the optimization and analysis of oligonucleotides with
TOPSIS. The TOPSIS method used in this work had the same procedure as the ones in the previous
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investigations with This algorithm. ODNs selected in the current work have shown their efficiency against
enzymatic degradation. The results obtained with TOPSIS showed that the candidates with higher stability
would have a better ranking position than other candidates with TOPSIS. Moreover, the ranking results
with these algorithms coincided with our previous data concerning the efficiency of these biomolecules.
More investigations would be required for the optimization of ODNs assembled with other biomolecules as
well as nanomaterials. The results obtained in the current work can be used in the development of these
materials. This can give a new insight for their further applications in sciences and engineering.
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